пятница, 30 января 2009 г.

Отпечатки пальцев

Тонкие бороздки отпечатков пальцев нужны не только для того, чтобы крепче держаться за ручку в трамвае. Если бы не они, мы были бы в 100 раз менее чувствительны к шероховатостям поверхности. Как показали четыре французских физика с помощью «искусственного пальца», папиллярные линии работают, как своеобразный фильтр высокой частоты.

Узоры папиллярных линий, которые обычно называют отпечатками пальцев, – черта, присущая очень немногим животным. Наличие индивидуальных отпечатков достоверно установлено у коал и одного из американских видов куниц, однако чаще всего они встречаются лишь у представителей одного отряда – приматов, в том числе и самого совершенного из них.

Папиллярные линии
(от латинского papilla – сосок) – рельефные линии на ладонных и подошвенных поверхностях (включая пальцы) у людей, обезьян и некоторых других млекопитающих.

Кожа человека состоит из...

У человека папиллярные гребни давно исследованы. Они образуются рядами специальных «сосочков», находящихся в глубине кожи, под слоем эпидермиса. Характерное расстояние между линиями узора составляет от нескольких десятых долей до примерно половины миллиметра, характерная глубина рельефа – 50–80 микрон. Узор этих гребней формируется ещё в утробе матери, на 3–4 месяцах её беременности, и даже у однояйцевых близнецов отпечатки пальцев в целом похожи, но в деталях совершенно не совпадают.

Однако на вопрос, зачем природе понадобились эти замысловатые узоры, окончательного ответа нет до сих пор.

Существуют две основных версии, которые совсем не исключают ни друг друга, ни какого-то третьего назначения. Во-первых, мелкая текстура на коже пальцев и ладоней повышает сцепление с естественными поверхностями, которые сплошь хоть немного шероховаты; при отсутствии ярко выраженных когтей такое приобретение, как кожные гребни, кажется очень полезным.

Во-вторых, наличие узора может повышать чувствительность к упомянутой шероховатости поверхностей, определяемой на ощупь. Человеческие руки лишены не только когтей, но и волосяного покрова на ладонях и кончиках пальцев. Но именно нервные окончания, овивающие подкожную часть волосков, обеспечивают основную чувствительность кожи к движениям и вибрациям.

Давление же чувствуют специальные глубинные рецепторы – так называемые мейсснеровы и пачиниевы (фатер-пачиниевы) тельца. Первые расположены сразу под эпидермисом, в тех самых «сосочках», ряды которых образуют гребни на поверхности пальцев, вторые – глубоко в дерме, на глубине примерно 2 миллиметра под наружной поверхностью кожи.

По мнению многих учёных, роль рельефа на поверхности наших пальцев – «подпрыгивать» при скольжении пальцев по обследуемой поверхности, превращая её неровности в акустические колебания в коже, которые способны регистрировать рецепторы давления.

Пачиниевы и мейсснеровы тельца
являются детекторами давления (и, соответственно, акустических колебаний) и расположены в дерме кожи.

Пачиниевы (фатер-пачиниевы) тельца достаточно велики для того, чтобы быть видимыми невооруженным...

Какой именно рецептор «завязан» на определение текстуры поверхности с помощью папиллярных линий, догадаться несложно. Физиологические эксперименты показали, мейсснеровы тельца чувствительны к низкочастотным колебаниям – в диапазоне от 2 до примерно 40 Гц. Высокочастотные колебания с частотой от примерно 80 Гц до 400 Гц – вотчина пачиниевых телец, максимум чувствительности которых приходится примерно на 250 Гц. При расстоянии между гребнями в 0,5 мм и типичной скоростью скольжения кончиков пальцев при прощупывании поверхности в 10–15 см в секунду характерная частота получается в районе 200–300 Гц. Так что, несмотря на прямую связь папиллярных линий с мейсснеровыми тельцами, за детектирование колебаний должны быть ответственны более глубокие пачиниевы тельца.

Однако все эти рассуждения о пальцах «на пальцах» – ещё не наука; по крайней мере, не биологическая. Да и не особо физическая: точно рассчитать, какие колебания возбуждают реальные шершавые поверхности при взаимодействии с папиллярными линиями, как они распространяются в коже и во что превращаются на глубине в 2 миллиметра, когда добираются до детектора, – задача очень сложная.

Четверо французских физиков из 6-го и 7-го университетов Парижа под руководством Жоржа Дебрежаса решили вместо сложных расчётов положиться на эксперимент. Их работа принята к публикации в Science.


Схема экспериментальной установки. Микродатчик силы (1) установлен на жёсткой подложке (2) и покрыт эластичным материалом в форме сферического сегмента (3), выпуклая поверхность которого либо покрывалась узором из тонких параллельных гребней, либо оставалась гладкой; высота шарового сегмента h=2 мм. Получившийся тактильный сенсор помещён на подвижную в двух измерениях консоль (4,5), позволяющую измерять нагрузку на сенсор с помощью двух ёмкостных датчиков положения (6,7). В большинстве экспериментов консоль с тактильным сенсором перемещалась с постоянной скоростью v в горизонтальном направлении чувствительности датчиков, будучи прижатой с постоянным давлением к стеклянной пластине (8), на поверхности которой был нанесён узор из параллельных прямоугольных бороздок (9) разной ширины. // Science/AAAS

Технические подробности
Параметры бороздок шероховатой поверхности: средняя ширина – 75 микрон, одномерный спектр мощности – белый шум, ограниченный по частотному диапазону.

Скорость протяжки: 0,2 –...

Поскольку работать с живыми человеческими пальцами сложно, учёные создали «искусственный палец». Вместо пачиниевых тел они использовали микродатчик силы, слой кожи заменял двухмиллиметровый сегмент упругого материала, механические свойства которого были подобраны так, чтобы он максимально походил на дерму. Всё это было тщательно закреплено на специальном устройстве, которое позволяло измерять силу, с которой «палец» давит на шероховатую поверхность, пока его протаскивают вдоль неё с постоянной скоростью.

Дальше учёные провели две серии экспериментов. В первом случае поверхность «искусственного пальца» была гладкой, во втором её покрыли рядом симпатичных параллельных бороздок, в масштабе 1:2 изображающих собой папиллярные линии человеческого пальца. В качестве «исследуемой поверхности» выступала стеклянная пластинка, на которую были нанесены бороздки самой разной ширины – в том диапазоне неровностей, с которым приходится встречаться людям.

И доказали, что по мощности колебаний в нужном частотном диапазоне ребристая поверхность на два порядка превосходит гладкую.

А амплитуда этих колебаний, соответственно, примерно на порядок выше.

Иными словами, папиллярные линии на кончиках наших пальцев – это своего рода фильтры высокой частоты, настроенные на диапазон чувствительности пачиниевых рецепторов. При низких частотах и гладкая, и ребристая поверхность ведут себя одинаково.

Дебрежас и его коллеги также удостоверились, что действие этого «фильтра» ослабевает при рассогласовании взаимной ориентации полосок на «искусственном пальце» и на шероховатой поверхности. Поскольку в реальности мы имеем дело не с полосками, а с текстурами самых разнообразных форм, становится понятным, зачем папиллярные линии на наших пальцах завиты в такие разнообразные узоры.

понедельник, 26 января 2009 г.

Нанонадпись

Физики из Станфордского университета написали самые крохотные буквы в истории, которые в десятки раз меньше знаменитой надписи IBM из отдельных атомов. Они сделали квантовую голограмму, в которой в качестве третьего измерения используется не «глубина» изображения, а энергия. Рекордная методика пока не имеет практических перспектив.

Почти 20 лет назад сотрудники исследовательского подразделения IBM Дональд Эйглер и Эрхард Швайцер написали название своей компании 35 атомами ксенона на никелевой подложке. Расстояние между атомами, которые учёные с помощью сканирующего туннельного микроскопа водружали на подложку один за одним, было 1,3 нанометра, а размер самих букв составил чуть больше 4 нм.

Оперативка с диском поженились
Устаревшая технология считывания и записи информации на магнитные носители, похоже, дождалась выхода на пенсию. Японские ученые стерли грань между жёстким диском и оперативной памятью, научившись...

Конечно, большинству из нас такое достижение по барабану: уменьшить сканирующий туннельный микроскоп до размеров жёсткого диска никому не удавалось, да и скорость записи не так велика. Но исследователям компании IBM – райского уголка для исследователей того времени – было приятно: средняя плотность записи информации составила примерно 0,6 бит/нм2 – умопомрачительное значение с точки зрения компьютерной техники.

В принципе, теория допускает любую плотность упаковки информации в квантовом состоянии – был бы только вакуум достаточно чистым, а температура достаточно низкой (про эффекты не существующей пока квантовой теории гравитации забудем). Однако в реальности, даже лабораторной, плотность записи примерно в бит на квадратный нанометр считалась предельной – куда уж атомам быть ближе, чем в кристаллической решётке.

Хари Манохарану и его коллегам из американского Станфордского университета удалось превзойти своих коллег и учителей из IBM.

На медной подложке они написали университетскую аббревиатуру SU нанометровыми буквами. Да при том физически разместили две буквы в одном и том же месте.

Плотность информации составила 20 бит/нм2. Работа с описанием нового метода принята к публикации в Nature Nanotechnology.


Этапы развития «нанонадписей» по версии авторов работы:
a) Электронная литография начала первой главы «Повести о двух городах» Диккенса на подложке из Si3N4, получившая фейнмановскую премию в 1987 году.
b) S-образная дыра, «просверленная» в массиве кремниевых нанопроводов пучком высокоэнергичных электронов.
c)Знаменитый «нанолейбл» IBM.
d-f. «Буквы», написанные в рамках работы Манохарана и его коллег разными методами. // C.R. Moon et al., Nature Nanotechnology 2009

Чтобы достичь такого успеха, Манохаран и его коллеги воспользовались методом квантовой голографии. В обычной голографии трёхмерное изображение какого-либо предмета записывается в виде картины интерференции двух потоков света – отражённого от предмета и опорного. После этого достаточно посветить на готовую голограмму опорным пучком, и состояние поля электромагнитного излучения восстановится. Говоря простым языком, из (почти) любой точки мы увидим предмет ровно так, как будто он в реальности находится там, где был в момент записи: можно поворачивать голову, ходить вправо-влево, и глаза будут видеть такие же лучи, которые в момент записи там проходили.

Станфордские учёные также воспользовались голографическим восстановлением, но восстанавливали они не световые волны, а электронные. Физики уже почти сто лет знают, что не только фотон, но и все элементарные частицы можно рассматривать и как волны. И эти частицы также могут интерферировать, проходить одновременно через пару щелей и так далее. В каждой точке волны можно складывать и вычитать. Более того, в эксперименте Манохарана можно было не задумываться о том, как это одна частица проходит сразу через две щели: на поверхности медного проводника электронов достаточно, и волновое описание для них более чем естественно.

С квантовой электронной голографией учёные играются не первый раз. Несколько лет назад тот же Манохаран вместе с «нанописарем» IBM Дональдом Эйглером научились создавать так называемые квантовые миражи, в которых интерференция электронных волн – точь-в-точь как в обычной голографии – переносила картину рассеяния электронов атомом или молекулой в другую точку. Однако с точки зрения плотности информации такой трюк не давал выигрыша: чтобы создать голограмму, эти центры рассеяния надо было сначала поместить в пространстве на место «голографируемого объекта».

Поскольку любая квантовая система может находиться одновременно в нескольких разных состояниях, энергии которых могут отличаться, систему описывают вероятностно – задают функцию ρ(x, y; E), показывающую, насколько вероятно, что энергия электронов в точке (x,y) равна заданному значению E. Именно в этой функции и зашифровали всю информацию учёные.

В последней работе третье пространственное измерение, на которое надо было проектировать голограмму, учёным заменила энергетическая координата. Для считывания им приходилось многократно сканировать крохотную медную площадку на нескольких энергетических уровнях. И на каждом уровне могла быть записана своя буква – количество срезов ограничивает лишь способность записать одну букву так, чтобы она не испортила запись на соседних «срезах».

И вот вопрос о записи для учёных самый больной.

Чтобы создать электронную голограмму, они разбрасывают по медной площадке молекулы CO (угарного газа); электронные оболочки этих частиц поглощают и рассеивают электронные волны на поверхности меди примерно так же, как частицы почерневшего серебра на фотопластинке рассеивают и поглощают световые волны.

Но вот решить задачу, как раскидать молекулы, чтобы при считывании получилась латинская буква, а не китайский иероглиф, учёные пока могут лишь в индивидуальном порядке. Компьютер берёт исходное случайное распределение, вычисляет, как будет выглядеть считанная голограмма, а потом пытается тупо двигать частицы до тех пор, пока рассчитанная запись не сойдётся с той, которая нужна.

Кроме того, учёные слегка лукавят, когда говорят о рекордной плотности записи.

Даже если им удалось поместить 20 бит на 1 нм2, это не значит, что на участке в 1000 нм2 поместятся 20 тысяч бит.

Мало того что нет общего алгоритма, способного вычислить, как записать эти 20 кбит. «Рябь» на поверхности электронных волн, рассеянных где-то за границами клочка меди с записью, доберётся и до него и будет портить картину. Например, когда учёные записывали S и U, они оставляли вокруг поля по 5–10 нм. Если их учитывать при расчёте, плотность записи упадёт в несколько раз.

Впрочем, Манохаран и его коллеги и не утверждают, что их изобретению суждена скорая реализация в каких-нибудь «наноголографических квантовых жёстких дисках». Более того, запись хоть сколько-нибудь значительного количества информации будет занятием «откровенно непрактичным», пишут учёные. Однако эффект наверняка найдёт своё применение в науке. А рекорд уже никак не отменишь.

вторник, 20 января 2009 г.

Догнать эволюцию

Хотя вопрос о влиянии размеров и скорости сперматозоидов на индивидуальный успех особей остаётся спорным, они точно имеют значение в вопросе образования новых видов. Африканские цихлиды, самцы которых обладают более быстрыми, крупными и многочисленными сперматозоидами, дальше ушли от общего предка.

Спор о том, имеют ли значение размер и скорость сперматозоидов, начался среди биологов очень давно. По мнению Джона Фитцпатрика и его коллег из Университета Западной Австралии и канадского Университета имени Макмастера, имеют – если не в пределах одного вида, то точно в появлении новых видов и межвидовом противостоянии.

Рыбий глаз от катаракты
Глаза африканских цихлид сулят человеку избавление от старческой дальнозоркости и катаракты. Хрусталик этих рыб способен менять не только форму, но и оптические свойства самого материала, из которого сделан,...

Стоит сразу отметить, что «тактические характеристики» юрких сперматозоидов и неподвижных спермиев играют роль только при «множественном» оплодотворении, когда у одной самки в течение фертильного периода происходит несколько половых контактов. У более совершенных видов, к которым относится и человек, основной отбор идёт на стадии выбора партнёра, и уже только ему, самому сильному, умному, красивому и прочее, предоставляется право распространить свои гены, вне зависимости от «качества» спермы.

Что же касается видов, морально продвинувшихся не столь далеко, то, как долгое время полагали учёные, именно скорость и жизнеспособность сперматозоидов – залог успешного оплодотворения. А следовательно – и ключевой фактор естественного отбора.

Более детальные исследования показали, что это не совсем так.

Размер хвоста не имеет значения

Длина хвоста сперматозоида не играет ключевой роли в скорости передвижения и в естественном отборе, по крайней мере среди животных с внутренним оплодотворением. Стюарт Хамфрис и соавторы публикации в BMC
...

В частности, для увеличения скорости сперматозоида требуется возрастание как длины его хвостика, так и запасов энергии. Однако это неизбежно влечёт за собой увеличение размеров, а следовательно – и сопротивления жидкости. Как подтвердили математические и некоторые практические изыскания на сперматозоидах млекопитающих, длина и размер вовсе не означают максимальную скорость.

Второй постулат, подвергшийся редакции за последнее время, касается связи между скоростью и успехом. Как показали биологи, «самый быстрый» не всегда означает «самый эффективный». Здесь вступают в силу механизмы «посткоитального» отбора, которыми природа наградила половые пути полигамных самок. Эти механизмы позволяют самкам останавливать сперматозоиды, по тем или иным причинам им не понравившиеся.

Именно из-за этого многообразия факторов взгляды на эволюцию сперматозоидов постоянно меняются.

Одни учёные считают, что ключевой фактор – скорость, другие – размер. Притом среди тех, кто стоит за размер, тоже есть две партии. Некоторые аргументы работают в пользу больших гамет, некоторые – в пользу маленьких. В некоторых случаях ключевым является умение оставаться невидимым для защитных систем женских половых путей.

Голубые отделились в новый вид
В африканском озере Виктория новые виды образуются буквально на глазах – своих и глазах учёных. У цихлид, обитающих на разных глубинах, отличаются окраска и цветочувствительность, что при спаривании...

Отчасти поэтому Фитцпатрик выбрал для своих экспериментов рыб семейства цихлид, обитающих в африканском озере Танганьика: благодаря наружному оплодотворению материнский вклад в отбор спермы у них минимален. Вторая причина интереса авторов публикации в Proceedings of The National Academy of Sciences к этим рыбкам – интенсивное видообразование, движущей силой которого может оказаться даже цветовосприятие. Кроме того, икру могут пытаться оплодотворить сразу несколько самцов, так что случай «беспутства» налицо.

Ученые в прямом смысле устроили гонку сперматозоидов для 29 близкородственных видов, обитающих в одном и том же озере. Поскольку расположение всех их на филогенетическом дереве было предварительно установлено генетически, то авторам не составило труда определить движущую силу отбора.

Ей, как и предполагалось, стали длина, размер, жизнеспособность и количество сперматозоидов в эякуляте.

Все четыре показателя коррелировали с эволюционной удаленностью вида от общего предка.

Безусловно, это не означает, что только параметры гамет играют роль в естественном отборе – в таком случае рыбки бы уже давно превратились в дрейфующие половые органы. Умение добывать пищу и прятаться от хищников не менее важно – только такие особи способны достигнуть половозрелого возраста. Да и самку, готовую отложить икру, тоже надо увидеть. Так что даже самые быстрые сперматозоиды, несущие «не те» гены, хотя и дадут начало новому организму, но вот закрепиться в поколениях уже не смогут.